
ECE 523 Final Project

David Schwartz
Department of electrical and computer engineering

University of Arizona
Tucson, AZ

dmschwar@email.arizona.edu

Zhengzhong Liang
Department of electrical and computer engineering

University of Arizona
Tucson, AZ

zhengzhongliang@email.arizona.edu

Abstract

We proposed for this machine learning project the development of a classifier of a
time series of discrete events implemented as a spiking neural network. Here, we
discuss the development and implementation of dynamics of spiking neurons which
learn to classify patterns of spike times presented to their afferent connections,
closelly following the abstract model described in [1]. We present and discuss the
results of numerical simulations in which we test the accuracy of various spiking
neural classifiers, and compare to more pedestrian schemes. Our conclusions
produce more questions than answers, and so we propose further investigation of
phenomena studied here, as well as an exploration of extensions of this model that
may lead to a better informed understanding of learning and information processing
in spiking neural networks.

1 Introduction

We proposed for this machine learning project the development of a classifier of a time series of
discrete events implemented as a spiking neural network. Here, we discuss the development and
implementation of dynamics of spiking neurons which learn to classify patterns of spike times
presented to their afferent connections, closelly following the abstract model described in [1]. We
first demontrate that a network consisting of dynamically similar neurons, whose excitatory synapses
are subject to classical spike timing dependent plasticity (STDP) as observed to occur in spiking
neural networks (collected from hippocampal slices) in vitro [2], acheives poor classification per-
formance compared to that of more traditional classification methods (namely linear regression and
a feed-forward multi-layer perceptron). In order to improve stability of learning and classification
performance, we quantify a performance improvement obtained from a modification to this first
formulation of STDP, in which we model a homeostatic drive towards equilibrium as normalization
of synaptic strengths. We explore theoretically the qualitative effects of this alteration and confirm
the predicted behavior with numerical simulations.
This paper is organized as follows: In section 2, we precisely map out the theoretical framework
supporting our model, experiments, and results. The following sections present the promised observa-
tions and discuss these results. In section 4, we propose a more complete investigation of phenomena
observed in this study, as well as an exploration of extensions of this model that may lead to a better
informed understanding of learning and information processing in spiking neural networks.

ECE 523: Machine learning - final project, University of Arizona, 2017, Tucson, Arizona.



Figure 1: Shown here is an artificial neuron, with activation function, f . wi represents the strength of
this neuron’s ith input

2 Theoretical framework

2.1 Traditional time series classification

As a first benchmark for classification performance, we implement softmax regression in the tensor
flow framework. This naive approach is capable of acheiving acceptable performance when training
data sets are sufficiently large, and the data to classify are linearly separable (i.e. there exists some
hyperplane that separates the data).

2.2 Artificial neural networks

It has been demonstrated that an appropriately structured network of artificial neurons, such as those
shown in 1, whose computation accumulates the sum of inputs αi, weighted by the corresponding
connection strength, i, and passed through a (usually nonlinear) activation function, f , can develop
a set of weights such that the output layer computes a bayes optimal discriminant function to
classify data pressented at the input layer [3]. That is to say, the output layer approximates posterior
probabilities of the classes on which it is trained. One may then read the output layer and select the
class corresponding to the most confident neuron. Any MLP will consist of an input layer, a collection
of hidden layers, and an output layer. The input layer will consist of a single neuron for each feature
of the data to classfy. The output layer will have a single neuron for each class. In general, hidden
layers may be connected in any manner, with any number of neurons. We demonstrated in homework
3 that with an appropriate learning algorithm coupled to a properly weighted regularizer, as long
as the training data-set is sufficiently large, such an MLP can acheive excellent performance (i.e.
accuracy from 5-fold cross validation exceeds 0.99 on 10-ary classification of MNIST digits).As a
benchmark for classification performance, we consider a feed-forward MLP with a single hidden
layer, implemented in tensor flow. Our artificial neurons are equipped with rectified linear activation
functions. This MLP is trained using tensorflow’s Adam optimizer, to which we’ve wed an L2
regularizer.

2.3 Spiking neurons

{
∂v
∂t = (Vrest−v+E)

τm

v = Vreset, if v ≥ Vt
(1)

We construct a spiking neural classifier from leaky integrate and fire (LIF) units. This neural
model coarsely mimics properties of realistic neurons while maintaining reasonable computational
complexity. We prescribe the dynamics of this model as governed by equation 1. Here, v is membrane

2



potential, Vrest is the resting potential of neuron. E is the post-synaptic potential evoked by a pre-
synaptic spike. That is to say, E is the increase in membrane potential produced by an input spike.
τm is the membran potential time constant. Vt is the neuron’s spiking threshold. When v exceeds Vt,
the neuron emits a spike, and its membrane potential resets to Vreset. A neuron’s membrane potential
settles to V at equilibrium (for example, when it receives no pre-synaptic spikes).

0 100 200 300 400 500

time (ms)

-80

-60

-40

-20

V
(m

V
)

Figure 2: Depicted above is a trace of membrane potential (shown as a function of time) of a typical
spiking neuron engaging in two spiking events

Important properties of membrane potential dynamics emerge from equation 1. First, observe that a
neuron’s spiking is driven by its membrane potential. Primarily, this can be stimulated by increasing
E, an effect induced by reception of input spikes. Additionally, note that choice of the parameter,
τm, determines a neuron’s excitability. If τm is large, then the neuron tends to be reluctant to vary
its membrane potential. Conversely, when τm is too small, even very small perturbations in E can
produce spikes. Figure 2 demonstrates the desired spiking behavior emerges from our presribed
neuronal dynamics.

2.4 Learning and STDP

Ej = Ej + α
I∑
i=1

wi,jsi, if a pre-synaptic spike is received
∂Ej

∂t = −Ej

τn
, otherwise

(2)

Equation 2 describes our dynamical model of synaptic transmission (i.e. the effect on post-synaptic
potential induced by incoming spikes). i (resp. j) indexes pre(resp. post)-synaptic neurons. Ej is the
increase in post-synaptic potential evoked by the spike in question. I is the number of pre-synaptic
neurons. wi,j is the strength of the connection from neuron i to neuron j. si is an indicator function
taking the value 1 when the pre-synaptic neuron spikes. α, a constant in our model, is a unitless
quantity, included to incorporate the effect of synaptic resistance/conductance. If a post-synaptic
spike occurs in the absence of presynaptic spikes, E decays exponentially.

2.5 Classical STDP

∆w =

{
Apre · exp(− tpost−tpre

τs
), tpost > tpre

Apost · exp(− tpre−tpost

τs
), tpost < tpre

(3)

Equation 3 shows a classical STDP weight update rule, demonstrated in [2] to govern variation of
synaptic weights as a function of relative spike times in vitro. tpre is the time of the most recent
pre-synaptic spike, and tpost, the time of the most recent post-synaptic spike. Apre and Apost determine
learning rate. We choose Apre > 0 and Apost < 0 so that wi,j strengthens (and wj,i weakens) when

3



neuron j spikes after neuron i. Notably, the change in synaptic strength is maximized when the time
beween pre and post synaptic spikes is minimized.

time (ms)ch
an

ge
in

sy
n
ap

ti
c
st
re
n
gt
h
,
∆
w

i,
j

symmetric STDP

asymmetric STDP

Figure 3: Typical STDP windows (i.e. graphical depictions of ∆wi,j); a symmetric window, in which
τpre = τpost and an asymmetric window, in which τpre 6= τpost

Figure 3 graphically depicts this change in synaptic efficacy as a function of the time between the
relevant pre-synaptic and post-synaptic spikes. In the symmetric case, τpre = τpost, which produces
potentiation ofwi,j , equal in magnitude to depression experienced bywj,i, assuming both connections
exist. Any asymmetric window weights potentiation and depression unequally. Our implentation of
classical STDP assumes a symmetric window.

2.6 Competitive STDP {
∆wi,j = Apre · exp(

ti−tj
τs

)

∆wi,k = −wi,k · ∆wi,j

wcons−wi,j

We extend classical STDP with a variant of competition at the outputs, such that when the synapse,
wi,j is strengthend, the other connections from neuron i to neuron k are weakened. We implement this
competitivity via normalization of output synapses to the summed strengths of outputs of each input
neuron at each synpatic update operation. To accomplish this, we impose a constraint wcons, which
bounds from above strength of connections departing a neuron. Traditionally, as discussed in [4],
synaptic competition is considered as implemented by normalization of weights. Our implementation
of competitive spike time based learning differs from examples discussed in [4, 5] in that theirs
implement competition as normalization of synpatic strengths to the summed strengths of common
inputs (i.e. they consider competition among synapses projecting to a common post-synaptic neuron)
while we consider competition among synapses originating from a common pre-synaptic neuron.
Our approach follows from an intuitionistic argument: A neuron projecting synapses is burdened
by physics with a a strict upper bound on the energy it may expend on communicating a spike to its
post-synaptic neighbors. Additionally, physics limits a neuron’s neurotransmitter1 budget. It follows
that if the neuron is driven invest more energy in a particular channel, it must divest of others.
Our competitive learning rule has 3 important features. Firstly, it imposes an upper bound on the
sum of efficacies of synapses departing a neuron. Secondly, this learning rule allows this sum to
increase slowly and more stably. And finally, the learning rule ramps up competitivity (i.e. increases
the impact of this normalization) as strength approaches a hypothetical maximum, wcons. For precise

1Neurotransmitters are molecules released at a synapse, and communicated to dendrites of post-synaptic
neurons via diffusion across a gap[6].

4



choices of this and other parameters, refer to section 5.2. While our implementation of classical STDP
assumes a symmetric window, our competitive spiking classifier assumes an assymetric window that
is qualitatively similar to the one shown in figure 3.
Consider equation 4 and assume that neuron i emits a spike shortly before j. In response, synapse
wi,j is strengthened, and all other synapses wi,k are weakened. We know that

K∑
k=1,k 6=j

∆wi,k =

K∑
k=1,k 6=j

(− wi,k∆wi,j
wcons − wi,j

), (4)

where K is the number of synapses projected by the neuron in question. Now, if the sum of outgoing

synaptic efficacies, Ψ = wi,j +
K∑

k=1,k 6=j
wi,k hits wcons, we have

wcons = wi,j +

K∑
k=1,k 6=j

wi,k (5)

Combining equation 4 and 5 we have:

K∑
k=1,k 6=j

∆wi,k =

K∑
k=1,k 6=j

(− wi,k∆wi,j
K∑

k=1,k 6=j
wi,k

) (6)

= −∆wi,j (7)

Equation 7 reveals that when Ψ reaches wcons, competition should impose depression in magnitude
equal to that of the potentiation induced by the pair of spikes of neurons i and j. This should drive
the network towards equilibrium and prevents epilleptic destabilization that results from run-away
potentiation.
If Ψ remains much smaller than wcons, we have

wcons = B + wi,j +

K∑
k=1,k 6=j

wi,k, (8)

where B is a variable defining competitivity equal to the difference between wcons and the quantity of
synaptic efficacy already invested after the potentiation induced by the most recent pair of spikes.
Thus, 1

B can be thought of as a measure of competitivity. Combining equation 8 and 4 we have

K∑
k=1,k 6=j

∆wi,k =

K∑
k=1,k 6=j

(− wi,k∆wi,j

B +
K∑

k=1,k 6=j
wi,k

) (9)

= −∆wi,j(

K∑
k=1,k 6=j

wi,k

B +
K∑

k=1,k 6=j
wi,k

) (10)

When the neuron has lots of room in its budget of energy and neurotransmitter resources, B is
relatively large, thus the decrease, ∆wi,k is small. In this case, competition is mild. On the other
hand, when the Ψ nears wcons, B is very close to zero. Equation 10 demonstrates that in this case,
total synaptic depression (i.e. depression summed over all outgoing synapses, wi,k where k 6= i) is
equal to potentiation, wi,j .

5



2.7 Spiking classifiers

Figure 4: Architecture of the proposed spiking neural classifier

Following the example of [1] we implement a network of leaky integrate and fire (LIF) neurons
with plastic synapses with the dynamics described in 2.3 to construct a bilayer feedforward spiking
neural network. The structure of this network is illustrated in figure 4. The input layer consists of
edge detection units, ei. These project to the output layer, which consists of tempotrons, synapses
subject to the plasticity dynamics described in the previous section. This output layer is trained in
a supervised learning paradigm by a teaching signal realized as the induction of a pre-determined
number of spikes induced in the target tempotron. This learning process, described in algorithm 1,
stimulates the edge detectors with visual information encoded in spike times, and near the end of
these time series, induces spikes in the target tempotron. Weights are updated during each learning
iteration by evolving states of each component of the collective dynamical system formed by the
network for a duration long enough to allow the network to settle to an equilibrium state at the
conclusion of each evolution of network activity. This numerical computation of the trajectory of
the dynamic network activity is the essential functionality performed upon executing the ‘evolve’
function called in line 3 of algorithm 1.

Algorithm 1 Tempotron learning
Input: A list of time series, Xtrain; A list of targets, Ytrain; A training threshold, ξ
Output: A trained network of tempotrons, T

1: for time series, Xt ∈ Xtrain, Yt ∈ Ytrain do
2: while starget < ξ do
3: T ← evolve(T,Xt, Yt)
4: starget ← number of spikes emmitted by target tempotron
5: end while
6: end for

Algorithm 2 implements a readout scheme or decoder, which converts spike counts, recorded from
the tempotrons during stimulation by the encoded test pattern in question. We use a naive majority
voting process in that the classification, Ŷ corresponds to the class on which the most confident (i.e.
most active) neuron was positively trained.

Algorithm 2 Tempotron decoding
Input: Vector of spike counts emitted by each tempotron in the network, n
Output: Classification, Ŷ

1:
Ŷ = argmax

i∈{1,...,C}
ni

6



2.8 Encoding

Any natural (i.e. biologically implemented) spiking neural classifier - and especially one receptive to
visual information - should take advantage of the efficient coding employed by the mammalian brian.
For example, humans typically have ≈ 4.6 million cone cells and ≈ 92 million rod cells, for a total
of ≈ 96.6 million photoreceptors in each eye [7]. The output of the human eye typically has between
0.71 and 1.54 million retinal ganglion cells, though this is highly variable across eyes surveyed [8].
This means that there is an encoding process that reduces the dimensionality of the visual data by
between 8 and 9 orders of magnitude, before any neurons located in the brain perceive the visual
signal. Visual information flows from retinal ganglion cells to V1, the mammalian primary visual
cortex. V1 preprocesses the visual information for higher layers of processing by performing edge
detection (and probably several other computations) [9, 10].

Edge 
detection

Spike times 
at input layer

Figure 5: A block diagram of the encoding model that processes MNIST images to produce patterns
of spike times

Luckily, no tractable classification problem and data-set would have 96 million degrees of freedom.
As a result, we do not implement the lossy dimensionality reduction encoding performed by the retinal
ganglion cells. Instead, we assume that the MNIST data-set, which consists of 784 pixel images, has
already provided us with a lossily compressed image. In order to emulate the image preprocessing
performed by V1, we preprocess each MNIST image using scikit-image’s implementation of the
canny edge detector. This produces a vector of 784 boolean values, each of which indicates the
presence of an edge at the corresponding pixel. In order to encode these edge detections as time
series, as this is the domain in which the tempotron learns and classifies, we map bijectively map the
pixel indices both to discrete instances in a time series, and neurons in the input layer. The presence
of an edge at pixel i is encoded as a spike emmitted by neuron i at ims.

2.9 Performance testing methods and data

To benchmark the performance of our spiking neural classifiers, we train and test on encoded time
series sourced from MNIST digit images using the encoding process described in section 2.8. Each
MNIST image is first encoded as a series of input layer spikes. By partitioning this dataset, we
implement k-fold cross validation, in which we train partition the dataset into k folds, train on
(i.e. fit the classifier to) k − 1 folds and test the classfication performance on the remaining fold.
To demonstrate the powerful generalizability of the tempotron classifiers considered here, we also
measure classifier performance using reverse k-fold cross validation (in which we train on one fold,
and test on the remaining k − 1 folds).

3 Results

3.1 Training results

Figure 6 shows mean accuracy of classifcation after learning for the corresponding number of
iterations. Accuracy is averaged across five mutually disjoint data sets, each of which is disjoint from
the set of potential training data. Training data sets consisted of one instance of each class for each
supervised training iteration. The training signal here is implemented as a single spike induced in
the target tempotron. Error bars indicate standard error of the mean (SEM) - i.e. ratio of standard
deviation to

√
Ntest, where Ntest is the number of samples over which we test. This demonstrates that

accuracy improves dramatically for the first few training iterations, after which, it appears to noisily
osillate near the maximum accuracy acheived.

7



0 10 20 30 40

number of training iterations

0.4

0.6

0.8

1

a
cc
u
ra
cy

Figure 6: Accuracy of classification (with a competitive network) vs. number of learning iterations

0 2000 4000 6000

time (ms)

0

0.5

1

1.5

sy
n
ap

ti
c
st
re
n
gt
h

synapse to 0 (classical)

synapse to 1 (classical)

synapse to 0 (competitive)

synapse to 1 (competitive)

Figure 7: Variation in synaptic efficacy resulting from competitive STDP

Figure 7 shows the distribution of weights after a competitive network is trained on 8 samples
chosen from a randomly allocated training set (chosen from the MNIST digit images and encoded as
described in section 2.8). Each pixel’s color represents the relative efficacy (normalized to largest
strength observed) of the connection from the corresponding edge detector to the indicated tempotron,
according to the colorbar provided. The left (resp. right) panel shows strengths of afferent connections
of tempotron 0 (resp. 1). We have arranged the indices so as to preserve the spatial organization of
the edge detectors in our encoding model. Qualitatively, these demonstrate that STDP associates
edge detectors with the target tempotron, and depresses connections between target tempotrons and
edge detectors that exclusively respond to non-target stimuli. To see this, note the similarity of the
heat maps to the corresponding digit.

5 10 15 20 25

edge detector index

5

10

15

20

25ed
g
e
d
et
ec
to
r
in
d
ex

10

20

30

40

50

60

n
o
rm

a
li
ze
d
sy
n
a
p
ti
c
st
re
n
g
th

5 10 15 20 25

edge detector index

5

10

15

20

25ed
g
e
d
et
ec
to
r
in
d
ex

Figure 8: Distributions of synaptic strength from edge detection units to tempotrons

8



Figure 8 shows change in synaptic weight over time. The blue (resp. orange) curve corresponds to the
connection from edge detector 712 to tempotron 0 (resp. 1). In first 3 epochs shown here, [0, 2400]ms,
the network is trained on an instance of the encoded image of the number 0. During this training
session both synapses undergo modification in response to the teaching signal (i.e. spikes induced in
tempotron 0): W712,0 is potentiated (i.e. strengthened), while W712,1 is depressed (weakened), albeit
quite slowly. This slow depression is the essential enhancing effect of competitive learning, and its
combination with a Hebbian learning process, STDP. In [11], it is suggested that homeostatic (i.e.
regulatory and equilibrating) processes are necessary in order to balance the instability imposed by
the rapid potentiation that occurs. Without such regulation, the network may become overconnected
and epilleptic in response to further stimulation (e.g. during additional training or classification). In
the remainder of the session, the network is trained on an encoded image of the number 1. Here
too, we see the desired effect: W712,1 is potentiated, while W712,0 is slowly depressed. In contrast,
classical STDP exhibits qualitatively similar potentiation and no depression.

3.2 Performance results

classifier

0

0.2

0.4

0.6

0.8

1

a
cc
u
ra
cy

(n
o
rm

a
li
ze
d
)

regression
(reverse)

regression
(forward)

MLP (reverse) MLP (forward) classic STDP
1 spike

classic STDP
4 spikes

competitive
STDP

Figure 9: Accuracy of classification compared across all relevant classifiers considered

Figure 9 shows accuracy of various classifiers, averaged (for each classifier) across each iteration of
either 10-fold cross validation or reverse 10-fold cross validation. Aggregate training and testing data
sets are disjoint. Both forwared and reverse cross validation is computed over a dataset compiled from
100 instances of each class, chosen pseudo-randomly and programatically before any experimenation
from the complete MNIST set of digit images. This pre-selection process was implemented to
ensure reproducibility of our experiments. Error bars indicate SEM. We compare performance of our
spiking classifier, subject to classical or competitive STDP, with those of soft-max linear regression
and a MLP. All accuracies of spiking classifiers were obtained via reverse 10-fold cross validation.
Unsurprisingly, a network equipped with classical STDP experiences a performance improvement
when the teaching signal is enhanced by number of spikes in the training signal is quadrupled. This
results from the increase in abundance of plasticity inducing spike pairs. In either case, competitive
STDP tends to outperform classical STDP. Surprisingly, competitive STDP dramatically outperforms
linear regression and the MLP in the reverse cross validation experiments, while classical STDP
with an enhanced teaching signal achieves only a modest improvement over these more traditional
techniques. With the present formulation of the learning and decoding processes, even competitive
STDP does not improve its performance with additional learning iterations after the obvious phase
transition in accuracy (as a function of training iteration count, shown in figure 6) that occurs very
early in training. Thus performances of spiking classifiers in forward cross validation experiments
do not differ significantly from those in reverse cross validation experiments. For brevity, we do
not show those data. A more detailed description of implementations of systems discussed here is
available in section 5.1.

9



4 Discussion

We observe that classification performance improves dramatically with training iterations early in
the learning process, after which point, the accuracy oscillates near the maximum acheived. The
early rapid improvement in accuracy (which is not observed to occur on the same time scale in
soft-max regressors or MLPs) is a highly desired trait in any machine learning system - especially
those adapted to operate online. The later noisy oscillations may be an effect produced by training on
atypical representations of the target class. That the tempotrons are able to rapidly develop accuracy
exceeding 80% indicates optimistically, that improvements to learning arising from optimization of
the teaching signal and STDP windows (i.e. dynamics underlying ∆wi,j) should close this gap. One
such improvement may arise from a new training procedure, which requires that training continue
until the target tempotron spikes more confidently than any other tempotron (i.e. the decoder would
declare the target tempotron’s class in response to the recent epoch of stimulation). Following the
arguments discussed in [12], which demonstrate an equivalence between learning with stochatic
gradient descent on error of the readout (i.e. decoded classification) and STDP, when learning ensures
this constraint, we hypothesize that this augmentation should improve classification performance.
However applying this stronger requirement to the learning process will result in an increase in
required number of training epochs. One interesting direction for further research involves following
the approach of [13] to develop a more general information theoretic characterization of learning and
computation in spiking neural classifiers.
The first glaring limitations arise when considering the chosen encoding model. Further investigation
may explore how natural neural codes may arise from self organization of a preprocessing layer
placed between stimulus information and the tempotrons. The authors would be remiss to omit
admission that conclusions drawn from results presented here are further limited in the sense that this
work considers only binary classification problems. We hypothesize that results shown here extend to
multi-class problems, with any caveats imposed by changes in network stability and fundamental
limits of information processing [13]. We therefore propose further investigation of this hypothesis,
as well as other questions, whose answers may allow us to develop a more complete understanding of
spike time based learning, with the goal of classifying perceived patterns of spike times.
It is apparent that a fixed learning window, defining ∆wi,j , fails to induce plasticity outside of
its relevant time-scale. We propose to rectify this issue by studying how an adaptive window,
which varies in response to changes in the apparent statistics of pre-synaptic spike times, may
enable efficient and quickly generalizing learning of patterns at widely varying time scales.
This engineering approach to developing a stable network whose synaptic modifications are
governed by a time varying window was explored in metal oxide memristor networks in [14].
However, there is sparse general theoretical exploration of the impact of adaptive STDP windows
on a network’s stability and information processing power. Less studied still are interactions
between each of these and various synaptic depression mechanisms (which may be modeled
as operating across a broad range of timescales), such as those explored in [11], in which
such homeostatic mechanisms are shown to be necessary - but not necessarily sufficient - for
stable learning in a spiking neural network. Additionally, we only explore competition among
output synapses. While intuitively, such a scheme is reasonable, a complete investigation
will characterize impacts of dendritic competition. Note that this need not be implemented at
dendrites in a physical model, but could be thought of as occuring between a set of synapses
projecting to common neuron. We speculate that in combination with the newly proposed learning
paradigm, an adaptive STDP window may yield a stable, quickly genearlizing spiking neural classifier.

Acknowledgments

We would like to thank Dr. Koyluoglu for support and guidance in developing a time series prediction
system implemented in a spiking neural network, which inspired the study of the spiking neural
classifiers studied here.

References
[1] Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing–based decisions.

Nature neuroscience, 9(3):420–428, 2006.

10



[2] Yang Dan and Mu-ming Poo. Spike timing-dependent plasticity of neural circuits. Neuron, 44(1):23–30,
2004.

[3] Dennis W Ruck, Steven K Rogers, Matthew Kabrisky, Mark E Oxley, and Bruce W Suter. The multilayer
perceptron as an approximation to a bayes optimal discriminant function. IEEE Transactions on Neural
Networks, 1(4):296–298, 1990.

[4] Wulfram Gerstner and Werner M Kistler. Mathematical formulations of hebbian learning. Biological
cybernetics, 87(5-6):404–415, 2002.

[5] Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian learning through spike-timing-
dependent synaptic plasticity. Nature neuroscience, 3(9):919–926, 2000.

[6] Peter Dayan and LF Abbott. Theoretical neuroscience: computational and mathematical modeling of
neural systems. Journal of Cognitive Neuroscience, 15(1):154–155, 2003.

[7] Christine A Curcio, Kenneth R Sloan, Robert E Kalina, and Anita E Hendrickson. Human photoreceptor
topography. Journal of comparative neurology, 292(4):497–523, 1990.

[8] Andrew B Watson. A formula for human retinal ganglion cell receptive field density as a function of visual
field location. Journal of Vision, 14(7):15–15, 2014.

[9] HB Barlow and DJ Tolhust. Why do you have edge detectors. In Optical society of America Technical
Digest, volume 23, 1992.

[10] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional architecture in
the cat’s visual cortex. The Journal of physiology, 160(1):106–154, 1962.

[11] Friedemann Zenke and Wulfram Gerstner. Hebbian plasticity requires compensatory processes on multiple
timescales. Phil. Trans. R. Soc. B, 372(1715):20160259, 2017.

[12] Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, and Yuhuai Wu. Stdp as presynaptic
activity times rate of change of postsynaptic activity approximates backpropagation. Neural Computation,
2017.

[13] Ran Rubin, Rémi Monasson, and Haim Sompolinsky. Theory of spike timing-based neural classifiers.
Physical review letters, 105(21):218102, 2010.

[14] Mirko Prezioso, F Merrikh Bayat, Brian Hoskins, K Likharev, and D Strukov. Self-adaptive spike-time-
dependent plasticity of metal-oxide memristors. Scientific reports, 6, 2016.

5 Appendix

5.1 Implementations

Simulations of spiking neural networks subject to classical STDP are implemented and performed in the
brian2 framework. Brian2 is a python module developed to allow for fast and straightforward development of
simulations of spiking neural networks. Detailed installation instructions are available on the brian2 pythondocs
page. The computational overhead associated with such a framework, as well as the difficulty in implementing
causal, but counterintuitive constraints on plasticity, such as competition, motivated our development of a custom
simulation environment specifically engineered in python with the goal of quickly and accurately simulating our
spiking neural classifiers. This simulation environment, in which we produce all results related to competitive
learning, is implemented in the directory ‘competitiveSTDP’, located at the root of the deliverable (a .zip archive)
submitted for this assignment. Simulations of networks subject to classical STDP are implemented in the
directory, ‘classicalTempotron’, located in the root of the deliverable. Classification with linear regression and a
MLP are implemented in the directory ‘ANNC’ (artificial neural network classification), which is also located at
the root of the deliverable. Please consult the readme files (each of which is named ‘readme.txt’) located in the
directories ‘ANNC’, ‘classicalTempotron’, and ‘competitiveSTDP’ for more information.

5.2 Choices of parameters

In the classical STDP framework, we choose Vreset = −75mV, Vrest = −70mV, Vt = −54mV, τm = 5ms,
τn = 10ms, τs = 50ms, and α = 10mv.
In the competitive framework, we choose Vreset = −74mV, Vrest = −70mV, Vt = −55mV, τm = 150ms,
τn = 40ms, τs = 200ms, and α = 10mv.

11


	Introduction
	Theoretical framework
	Traditional time series classification
	Artificial neural networks
	Spiking neurons
	Learning and STDP
	Classical STDP
	Competitive STDP
	Spiking classifiers
	Encoding
	Performance testing methods and data

	Results
	Training results
	Performance results

	Discussion
	Appendix
	Implementations
	Choices of parameters


